SMOOTH MANIFOLDS FALL 2022 - MIDTERM REVIEW

1. Definitions

Definition 1 (Topological Manifold). A topological space M is locally (n-)Euclidean if for every $x \in M$, there exists a neighborhood $U \subset M$, an open set $V \subset \mathbb{R}^n$ and a homeomorphism $\varphi : U \to V$. The pair (U, φ) is called a *chart* of M (φ is often called a chart as well). A *topological manifold* is a topological space which is Hausdorff, second countable and locally Euclidean.

Definition 2 (Smooth Manifold). Let M be a topological manifold. A set \mathcal{A} of charts is called an atlas if $\bigcup_{(U,\varphi)\in\mathcal{A}}U=M$ (ie, the domains of the charts cover M). The atlas is called smooth if whenever $(U,\varphi),(V,\psi)\in\mathcal{A}$ are charts such that $U\cap V\neq\emptyset,\ \varphi\circ\psi^{-1}:\psi(U\cap V)\to\mathbb{R}^n$ is a diffeomorphism onto its image. A maximal smooth atlas is often called a smooth structure. A smooth manifold is a topological manifold with a distinguished smooth structure.

Definition 3 (Tangent Bundle). Let M be a smooth manifold, and $p \in M$. The tangent space at p is an n-dimensional vector space of equivalence classes. If (U, φ) is a chart such that $p \in U$, then we define $T_p^{\varphi}M$ with the vector space $T_{\varphi(p)}\mathbb{R}^n = \mathbb{R}^n$. We say that $v \in T_p^{\varphi}M$ and $w \in T_p^{\psi}M$ are equivalent if $D(\psi \circ \varphi^{-1})(v) = w$. T_pM is the vector space of equivalence classes in $\bigcup_{(U,\varphi)} T_p^{\varphi}M$.

Definition 4 (Derivative conditions). If M and N are manifolds, and $F: M \to N$ is a C^{∞} map, we say that F is

- a submersion if DF(p) is surjective for every $p \in M$,
- a immersion if DF(p) is injective for every $p \in M$,
- a emedding if it is an immersion and a homeomorphism onto its image, and
- a local diffeomorphism if DF(p) is an isomorphism for every $p \in M$.

Definition 5 (Vector Bundle). Let E and B be smooth manifolds, and $\dim(B) = n$. We say that E is a vector bundle over B if there exists a submersion $\pi: E \to B$ and an atlas \mathcal{A} of charts $\hat{\varphi}: \hat{U} \to \mathbb{R}^n \times \mathbb{R}^m$, where $\hat{U} = \pi^{-1}(U)$ for some open set $U \subset B$. We require that the atlas satisfies that if $(\hat{U}, \hat{\varphi}) \in \mathcal{A}$, there exists a chart φ defined on U such that $\varphi \circ \pi = p \circ \hat{\varphi}$, where p is the linear projection from $\mathbb{R}^n \times \mathbb{R}^m$ to \mathbb{R}^n , and $\hat{\varphi}(\hat{U}) = \varphi(U) \times \mathbb{R}^m$. Furthermore if $\hat{\varphi}, \hat{\psi} \in \mathcal{A}$, then $\hat{\varphi} \circ \hat{\psi}^{-1}|_{\{x\} \times \mathbb{R}^m}$ is a linear isomorphism.

Definition 6 (Sections of vector bundles). If $\pi : E \to B$ is a vector bundle, and section is a map $\sigma : B \to E$ such that $\pi \circ \sigma = \operatorname{Id}_B$. The section is called smooth if σ is C^{∞} . A section of TM is called a vector field.

Definition 7 (Local and Global Derivations). If M is a C^{∞} manifold and $p \in M$, the germ of a C^{∞} function at p is an equivalence class of functions under the equivalence relation $f \sim g$ if and only if there exists $U \subset M$ open and containing p such that $f|_{U} = g|_{U}$. Let $C_{p}^{\infty}(M)$ denote the set equivalence classes of real-valued functions at p. A (local) derivation (at p) is a map $\delta: C_{p}^{\infty}(M) \to \mathbb{R}$ such that if $f, g \in C_{p}^{\infty}(M)$, then

(1.1)
$$\delta(f \cdot g) = f(p)\delta(g) + g(p)\delta(g).$$

A global derivation on M is a map $\delta: C^{\infty}(M) \to C^{\infty}(M)$ satisfying the following generalization of (1.1):

$$\delta(f \cdot g)(p) = f(p) \cdot \delta(g)(p) + g(p) \cdot \delta(f)(p).$$

Each tangent vector induces a local derivation at its basepoint, and each vector field induces a global derivation, which we denote by $\delta_X(f) = X \cdot f$.

Definition 8. An ℓ -distribution or ℓ -dimensional subbundle on M is an assignment to each $x \in M$ an ℓ -dimensional subspace $E(x) \subset T_x M$. The distribution is smooth if for every $p \in M$, there exists an open set $U \subset M$ containing p and vector fields X_1, \ldots, X_ℓ which do not vanish on U such that $E(x) = \operatorname{span}_{\mathbb{R}} \{X_1(x), \ldots, X_\ell(x)\}$ for every $x \in U$. We say that E is integrable if it is the tangent bundle of some foliation \mathcal{F} (see the subsequent definition).

Definition 9. An ℓ -foliation on M is a smooth atlas \mathcal{F} such that for every $\varphi, \psi \in \mathcal{F}$, $\varphi \circ \psi^{-1}(\mathbb{R}^{\ell} \times \{y\}) \subset \mathbb{R}^{\ell} \times \{\varphi(\psi^{-1}(y))\}$ for every $y \in \mathbb{R}^{n-\ell}$. The tangent bundle to \mathcal{F} is the distribution $T\mathcal{F}(p) = D\varphi^{-1}(\varphi(p))(\mathbb{R}^{\ell})$, where $\varphi \in \mathcal{F}$ is any chart containing p in its domain. If E is a distribution such that $E = T\mathcal{F}$ for some foliation \mathcal{F} , we say that E is integrable.

Definition 10 (Flow). A flow on a manifold M is a C^{∞} map $F: \mathbb{R} \times M \to M$ satisfying

(1.2)
$$F(t+s,x) = F(t,F(s,x))$$

for every $t, s \in \mathbb{R}$, $x \in M$ and F(0, x) = x for every $x \in X$. A local flow is a map F defined only on an open neighborhood of $\{0\} \times M$ in $\mathbb{R} \times M$ satisfying equation (1.2) whenever it makes sense. Flows are often denoted as $F_t(x) := F(t, x)$, so that (1.2) becomes $F_t \circ F_s = F_{t+s}$.

Definition 11 (Lie bracket). Let X, Y be vector fields on M. The Lie derivative of Y along X is the vector field

$$[X,Y](p) = \frac{d}{dt}\Big|_{t=0} (F_t^Y)_*(X)$$

where F_t^Y is the (local) flow generated by Y. The Lie bracket of X and Y acts on C^{∞} functions via the formula

$$[X,Y] \cdot f = X \cdot (Y \cdot f) - Y \cdot (X \cdot f).$$

If E is a distribution on M, then a vector field X is called *subordinate to E* if and only if for every $p \in M$, $X(p) \in E(p)$. We say that E is *involutive* if for any two vector fields X and Y subordinate to E, [X, Y] is subordinate to E.

Definition 12 (Transversality). If M, N are smooth manifolds, $Q \subset N$ is an embedded submanifold, and $f: M \to N$ is a C^{∞} map, then f is called *transverse to* Q if for every $p \in M$ such that $f(p) \in Q$, $\text{Im}(Df(p)) + T_{f(p)}Q = T_{f(p)}N$.

2. Theorems

Theorem 13 (Submerison Theorem). If $F: M \to N$ is a submersion, then preimages $\{F^{-1}(n) : n \in N\}$ are the leaves of a foliation of M. Furthermore, every leaf is embedded.

Theorem 14 (Frobenius Theorem). A distribution E on a manifold M is involutive if and only if it is integrable.

Theorem 15. If X is a C^{∞} vector field on a smooth manifold M, there exists a unique (local) C^{∞} flow $\varphi_t: M \to M$ such that $X(p) = \frac{d}{dt}\Big|_{t=0} \varphi_t(p)$.

Theorem 16. The Lie bracket is well defined, and the definitions via flows and derivations are equivalent. The Lie bracket satisfies the following:

- $(Product\ rule)\ [X, fY] = (X \cdot f)Y + f[X, Y]$
- (Anticommutativity) [X, Y] = -[Y, X]
- (Bilinearity) [X, Y + Z] = [X, Y] + [X, Z]
- $(Jacobi\ Identity)\ [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0$

Theorem 17 (Transversality Theorem). If M, N are smooth manifolds, $Q \subset N$ is an embedded submanfield, and $f: M \to N$ is transverse to Q, then $\hat{Q} = f^{-1}(Q)$ is an embedded submanifold of M, such that $\operatorname{codim}(\hat{Q}) = \operatorname{codim}(Q)$. In the case when f is an embedding, the intersection $f(M) \cap Q$ is an embedded submanifold of N diffeomorphic to \hat{Q} .

Theorem 18. The following properties are open properties on compact manifolds (ie, stable under perturbations): submersion, immersion, embedding, local diffeomorphism, diffeomorphism, and transversality to a fixed submanifold $Q \subset N$.